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Motivation
Sources of polyhedral meshes:

meshing of complex geometries
adaptive mesh refinement methods
multi-block meshes (e.g., non-matching meshes)
mesh reconnection methods (e.g., ALE methods)
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Motivation
The MFD method gives a rich family of
discretization schemes with equivalent properties.

On simplicial meshes, this family includes schemes
appearing in mixed finite element methods.

The MFD method can be formally designed on
meshes with non-convex and degenerate elements.
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Mimetic finite difference method

~F = −K grad p, div ~F = b, div = −(K grad)∗, Null(grad) = const

MFD

F h = −G ph, DIVF h = bh, DIV = −G∗, Null(G) = const
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Mimetic finite difference method

~F = −K grad p, div ~F = b, div = −(K grad)∗, Null(grad) = const

Four-step methodology:
1. Define degrees of freedom for ph ∈ Qh and F h ∈ Xh

2. Equip discrete spaces with scalar products

3. Discretize the divergence operator

4. Derive the discrete flux operator from discrete Green’s formula

F h = −G ph, DIVF h = bh, DIV = −G∗, Null(G) = const
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Mimetic finite difference method
Step 1. Define degrees of freedom for ph ∈ Qh and F h ∈ Xh

ph is constant on each polyhedron
(ph)E is the degree of freedom associated with polyhedron E
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Mimetic finite difference method
Step 1. Define degrees of freedom for ph ∈ Qh and F h ∈ Xh

F h is constant on each mesh face

(F h)f is the normal flux component associated with mesh face f
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Mimetic finite difference method
Step 2. Equip discrete spaces with scalar products

[ph, qh]Q =
∑

E∈Ωh

(ph)E (qh)E |E| ≈

∫

Ω

pqdV

[F h, Gh]X =
∑

E∈Ωh

[F h, Gh]E ≈

∫

Ω

~F · ~GdV

where

[F h, Gh]E =

kE
∑

i,j=1

ME,i,j (F h)fi
(Gh)fj

and ME is an SPD matrix (it is not unique!).
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Mimetic finite difference method
Steps 3. Discretize the divergence operator

The divergence theorem

div ~F = lim
|E|→0

1

|E|

∮

∂E

~F · ~n dx

implies
(

DIV F h
)

E
=

1

|E|

∑

f∈∂E

(F h)f |f |
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Mimetic finite difference method
Steps 4. Derive the discrete flux operator

The continuous operators satisfy Green’s formula
∫

Ω

~F · K−1(K gradp) dx = −

∫

Ω

p div ~F dx.

We enforce that the discrete operators satisfy discrete Green’s formula

[F h, G ph]X = −[ph, DIV F h]Q ∀ph ∈ Qh ∀F h ∈ Xh.
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Meshes covered by the theory
Our analysis forbid:

anisotropic (stretched) elements
stretched faces
small 2D angles

Our analysis allow:
convex elements
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Meshes covered by the theory
Our analysis forbid:

anisotropic (stretched) elements
stretched faces
small 2D angles

Our analysis allow:
convex elements
degenerate elements

–



Meshes covered by the theory
Our analysis forbid:

anisotropic (stretched) elements
stretched faces
small 2D angles

Our analysis allow:
convex elements
degenerate elements
non-convex elements
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Key theoretical assumptions

For every element E and for every Gh ∈ Xh, there
are two positive constants s∗ and S∗ s.t.

s∗ |E|
∑

f∈∂E

(Gh)2
f ≤ [Gh, Gh]E ≤ S∗ |E|

∑

f∈∂E

(Gh)2
f

matrix ME is spectrally equivalent to the scalar matrix |E|I .

–



Key theoretical assumptions

For every element E with the center of gravity at the
origin and and every Gh ∈ Xh, we have

[(K ∇q1)I , Gh]E =

∫

∂E

q1 Gh dx

where

q1 = x, q1 = y and q1 = z.

–



Key theoretical assumptions

For every element E with the center of gravity at the
origin and and every Gh ∈ Xh, we have

[(K ∇q1)I , Gh]E =

∫

∂E

q1 Gh dx

where

q1 = x, q1 = y and q1 = z.

discrete flux operator Gh is exact for linear distribution of pressure.
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Estimate for the vector variable
Theorem. Let (p, ~F ) be the continuous solution,
(ph, F h) be the discrete solution and F I be the
interpolant of ~F . Then

|||F I − F h|||X ≤ C∗ h ‖p‖H2(Ω)

where
h = max

E∈Ωh

hE.
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Estimates for the scalar variable
Theorem. Let (p, ~F ) be the continuous solution,
(ph, F h) be the discrete solution and pI be the
interpolant of p. For convex domain Ω, we get

|||pI − ph|||Q ≤ C∗ h
(

‖p‖H2(Ω) + ‖b‖H1(Ω)

)

.

With a few additional assumptions, we get

|||pI − ph|||Q ≤ C∗ h2
(

‖p‖H2(Ω) + ‖b‖H1(Ω)

)

.
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Computing matrix ME

matrix ME has k(k + 1)/2 unknown entries:














m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44















for k = 4 (tetrahedron)

the key theoretical assumptions result in a linear
system

AME = C

the solution matrix ME is not unique !!!
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Polygonal meshes
Let p(x, y) = x3y2 + x sin(2πxy) sin(2πy) and

K(x, y) =





(x + 1)2 + y2 −xy

−xy (x + 1)2



 .
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1/h |||pI − ph|||Q |||F I − F h|||X

16 5.17e-2 7.38e-1
32 1.18e-2 2.44e-1
64 2.76e-3 8.45e-2

128 6.65e-4 2.89e-2

rate 2.09 1.56
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Random non-matching meshes
Let a = b = c = 1, K1 = 10, K2 = 1 and m = 3 in

p(x, y) =















a + bx + cym, y < 0.5,

a + c
K2 − K1

2mK2

+ bx + c
K1

K2

ym, y ≥ 0.5.
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K1

K2 # cells |||pI − ph|||Q |||F I − F h|||X

780 1.01e-2 1.12e-1
3286 2.36e-3 4.72e-2

13482 5.73e-4 2.24e-2
54610 1.41e-4 1.09e-2

rate 2.01 1.09
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Polyhedral meshes
Let p(x, y) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz) and

K(x, y, z) =













1 + y2 + z2 −xy −xz

−xy 1 + x2 + z2 −yz

−xz −yz 1 + x2 + y2













.

1/h |||pI − ph|||Q |||F I − F h|||X

8 3.83e-2 5.35e-1
16 1.10e-2 1.43e-1
32 2.86e-3 3.58e-2
64 7.21e-4 8.94e-3

rate 1.91 1.97

–



Conclusion
We developed a new methodology for the design and
the analysis of the MFD method.
We proved optimal convergence estimates.

Possible extensions:
h2-curved faces (smooth meshes)
problems with a lack of elliptic regularity
other PDEs (Maxwell, linear elasticity, etc)
strongly curved faces
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